Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells.
نویسندگان
چکیده
Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.
منابع مشابه
Trafficking of GFP-tagged DeltaF508-CFTR to the plasma membrane in a polarized epithelial cell line.
The DeltaF508 mutation reduces the amount of cystic fibrosis transmembrane conductance regulator (CFTR) expressed in the plasma membrane of epithelial cells. However, a reduced temperature, butyrate compounds, and "chemical chaperones" allow DeltaF508-CFTR to traffic to the plasma membrane and increase Cl(-) permeability in heterologous and nonpolarized cells. Because trafficking is affected by...
متن کاملEstablishment and characterization of a novel polarized MDCK epithelial cellular model for CFTR studies.
F508del is the most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that is responsible for the genetic disease Cystic Fibrosis (CF). It results in a major failure of CFTR to traffic to the apical membrane of epithelial cells, where it should function as a chloride (Cl-) channel. Most studies on localization, processing and cellular trafficking of wild-typ...
متن کاملRegulation of CFTR chloride channel trafficking by Nedd4-2: role of SGK1
Introduction: The cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl−) channel is an essential component of epithelial Cl− transport systems in many organs. CFTR is mainly expressed in the lung and other tissues, such as testis, duodenum, trachea and kidney. The ubiquitin ligase neural precursor cells expressed developmentally down-regulated protein 4-2 (Nedd4-2...
متن کاملFunctional expression and apical localization of the cystic fibrosis transmembrane conductance regulator in MDCK I cells.
The gene product affected in cystic fibrosis, the cystic fibrosis transmembrane conductance regulator (CFTR), is a chlorideselective ion channel that is regulated by cAMP-dependent protein kinase-mediated phosphorylation, ATP binding and ATP hydrolysis. Mutations in the CFTR gene may result in cystic fibrosis characterized by severe pathology (e.g. recurrent pulmonary infection, male infertilit...
متن کاملTargeting of SNAP-23 and SNAP-25 in polarized epithelial cells.
SNAP-23 is the ubiquitously expressed homologue of the neuronal SNAP-25, which functions in synaptic vesicle fusion. We have investigated the subcellular localization of SNAP-23 in polarized epithelial cells. In hepatocyte-derived HepG2 cells and in Madin-Darby canine kidney (MDCK) cells, the majority of SNAP-23 was present at both the basolateral and apical plasma membrane domains with little ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 279 2 شماره
صفحات -
تاریخ انتشار 2000